Геодезические спутники - определение. Что такое Геодезические спутники
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Геодезические спутники - определение

ПРОСТРАНСТВЕННЫЕ ЛИНИИ
Геодезические линии; Геодезическая кривая; Геодезические; Геодезическая линия
  • трёхосевого эллипсоида]]
Найдено результатов: 27
Геодезические спутники      

искусственные спутники Земли, запускаемые в качестве объектов наблюдения для решения задач спутниковой геодезии (См. Спутниковая геодезия). Материалами для решения таких задач служат измеренные в результате наблюдений направления на тот или иной спутник (позиционные наблюдения) и расстояния до него. Геодезические связи между пунктами Земли, удалёнными друг от друга до нескольких тыс. км (например при межконтинентальной космической триангуляции) устанавливаются путём позиционных фотографических наблюдений спутника движущегося на высоте 4-6 тыс. км одновременно из двух или более пунктов. Для обеспечения таких наблюдений спутниковыми фотокамерами (См. Спутниковая фотокамера) средних размеров запускаются надувные Г. с. - баллоны диаметром до 30-40 м из алюминированной пластмассовой плёнки. В динамической спутниковой геодезии используют более массивные спутники движение которых в меньшей мере зависит от неоднородностей атмосферы, а определяется в основном особенностями гравитационного поля Земли; такие Г. с. запускают на высоты до 3 тыс. км.

Для повышения точности одновременных позиционных наблюдений и измерения расстояний до спутников на Г. с. устанавливается специальное оборудование. Мощные импульсные источники света, работа которых контролируется бортовыми кварцевыми часами и управляется с Земли, облегчают позиционные наблюдения и позволяют синхронизовать их с высокой точностью при одновременном участии в работе нескольких станций.

Приёмо-передатчики, ретранслирующие радиосигналы, посылаемые на Г. с. наземными станциями, позволяют путём измерения сдвига фазы принятого на станции сигнала относительно посланного определять расстояния до спутника. Расстояния до Г. с. определяются также на основе анализа изменений частоты сигналов установленных на Г с. радиопередатчиков вследствие Доплера эффекта. Для измерения расстояний спутниковыми лазерными дальномерами на Г. с. устанавливаются уголковые отражатели (См. Уголковый отражатель). Первый Г. с. - американский спутник "АННА-1В", оборудованный импульсными лампами, - был запущен в 1962.

Лит.: Меллер И., Введение в спутниковую геодезию, пер. с англ., М., 1967; Инженерный справочник по космической технике, М., 1969.

Н. П. Ерпылев.

Спутник астероида         
  • Дактиль]].
АСТЕРОИД, ЕСТЕСТВЕННЫЙ СПУТНИК, ОБРАЩАЮЩИЙСЯ ПО ОРБИТЕ ВОКРУГ ДРУГОГО АСТЕРОИДА
Спутники астероидов; Тройной астероид
Спутник астероида — астероид, естественный спутник, обращающийся по орбите вокруг другого астероида. Спутник и астероид представляют собой систему, поддерживающуюся гравитацией обоих объектов. Астероидную систему, в которой размеры спутника сопоставимы c размером астероида, называют двойным астероидом. Также известны системы из трёх компонентов (например, крупные астероиды (45) Евгения и (87) Сильвия, астероид-аполлон (136617) 1994 CC, крупный транснептуновый объект и т. д.) . Известна одна система из четырёх компонентов: три спутника имеет астероид (130) Электр
Геодезическая         
Геодезическая линия. - Г. линией на поверхности мы называем такуюлинии), главные нормали всех точек которой совпадают с нормалями кповерхности. Если уравнение поверхности и прямоугольных координатах будет f (х, у,z) = 0, то два дифференциальных уравнения Г. линии будут иметь вид: , где . К тем же дифференциальным уравнениям мы придем, если поставим себезадачу найти кратчайшую линию на поверхности между заданными на этойповерхности двумя точками, а потому можем сказать, что кратчайшею линиеюна поверхности между двумя точками будет часть Г. линии, проходящейчерез эти точки. Обратное заключение не всегда справедливо, ибо иногдачасть геодезической линии, проходящей через две заданные на поверхноститочки, заключенная между этими точками, может не быть кратчайшею, чтоможно видеть из следующего простого примера. Возьмем шар; на нем, какизвестно, геодезическою линиею будет дуга большого крута. Пусть даны дветочки. не лежащие на концах одного и того же диаметра; через эти дветочки можно провести только одну дугу большого круга. На этой дуге точкиотделяют две части: меньшую 180°-ти и большую 1803-ти. Первая часть естькратчайшая кривая на шаре между двумя точками; вторая же, будучи частьюГ. линии, лежащею между заданными точками, не обладает указаннымсвойством. На плоскости Г. дитя совпадает с кратчайшею, т. е. с прямою.Для получения уравнения Г. линии в конечном виде, необходимоинтегрировать написанные выше уравнения. Для геодезии важен случайкратчайшей линии на эллипсоиде; решенный известным математиком Якоби. Вмеханике Г. линия играет важную роль: по ней движется точка,долженствующая оставаться на поверхности в том случае, когда на точку недействуют никакие внешние силы. Д. Гр Геодезия - наука, занимающаясяизучением вида и размера земли; в Г. же рассматриваются также иразличные условные способы изображения земной поверхности в виде карт ипланов. Небольшая часть земной поверхности может быть принимаема заплоскость; исследование такой части может быть сделано при помощи весьмапростых средств и способов и составляет предмет низшей Г. илитопографии; в высшей же Г. принимается в расчет кривизна земнойповерхности. Обыкновенно считают Пифагора первым, который принимал землюза шар; первое определение размеров земли, принимая ее за шар, былосделано крайне остроумным способом Эратосфеном, жившим в III в. до Р. X.В начале XVIII ст. Ньютон высказал, что земля должна иметь видэллипсоида вращения, сжатого у полюсов, и на основании теоретическихсоображений определил величину этого сжатия. Предположение Ньютонаблестяще подтвердилось позднейшими геол. работами. Для определенияразмеров земного эллипсоида служат так назыв. градусные измерения. Понятно, что эллипсоид, вычисленный на основании одних градусныхизмерений, будет более или менее отличаться от эллипсоида, полученногоиз других градусных измерений, ибо эллипсоид представляет лишь идеальнуюформу так назыв. геоида; продолжив мысленно поверхность океанов внутрьконтинентов так, как будто эти последние были прорезаны глубокими, нобесконечно узкими каналами, получим вполне определенную, воображаемуюповерхность земли, которую, по предложению Листинга (1873), назв.геоидом. Исследование вида и размеров геоида и составляет в настоящеевремя главнейшую задачу высшей геодезии (Bruns, "Die Figur der Erde",1876). Кроме градусных измерений, для решение вопроса о виде землислужат также и определения величины силы тяжести в различных местахземной поверхности из наблюдений над качанием маятника. Важнейшиеруководства по Г. : Clarke, "Geodesy" (есть русский перевод В.Витковского, 1890); Helmert, "Die mathemat. und physikal. Theorie d.hoheren Geodasie"; Zachariae, "Die go dasische Hauptpuncte u. ihreCoordinaten " (перев. с датского); W. Jordan, "Handbuch d."Vermessungskande" (есть русские перевод Бика); Болотов, "Курс высшей инизшей геодезии"; Bauerofeind, "Elemente d. Vermessungskunde" (7 изд.,1890); Мейен, "Низшая Г. "; Бик, "Низшая Г. " (вышли 2 т.). А. Жданов.
Геодезические линии         

линии на поверхности, достаточно малые дуги которых являются на этой поверхности кратчайшими путями между их концами. На плоскости Г. л. - прямые, на круговом цилиндре - винтовые линии, на сфере- большие круги. Не всякая дуга Г. л. является на поверхности кратчайшим путём; например, на сфере дуга большого круга, бо́льшая полуокружности, не будет на этой сфере кратчайшей между своими концами. Г. л. обладает тем свойством, что их главные нормали (См. Нормаль) являются нормалями к поверхности. Г. л. впервые появились в работах И. Бернулли и Л. Эйлера. Т. к. определение Г. л. связано только с измерениями на поверхности, они относятся к объектам т. н. внутренней геометрии (См. Внутренняя геометрия) поверхности. Понятие Г. л. переносится в геометрию римановых пространств. Советские математики А. Д. Александров и А. В. Погорелов исследовали аналоги Г. л. на общих выпуклых поверхностях. Понятие Г. л. широко применяется в теоретических и практических вопросах геодезии. Точки земной поверхности проектируются на поверхность земного эллипсоида (См. Земной эллипсоид) и соединяются Г. л. При этом применяются некоторые специальные приёмы для перехода от расстояний и углов на земной поверхности к соответствующим дугам Г. л. и углам между ними на поверхности земного эллипсоида.

Лит.: Люстерник Л. А., Геодезические линии, 2 изд., М. - Л., 1940; Александров А. Д., Внутренняя геометрия выпуклых поверхностей, М. - Л., 1948; Погорелов А. В., Лекции по дифференциальной геометрии, 4 изд., Хар., 1967; Келль Н. Г., Высшая геодезия и геодезические работы, ч. 1, Л., 1932; Красовский Ф. Н. Руководство по высшей геодезии, ч. 2. М., 1942.

Э. Г. Поздняк.

Геодезическая         
Геодези́ческая (также геодезическая ли́ния) — кривая определённого типа, обобщение понятия «прямая» для искривлённых пространств.
ГЕОДЕЗИЧЕСКАЯ ЛИНИЯ         
геометрическое понятие, обобщающее понятие прямой (или отрезка прямой) евклидовой геометрии на случай пространств более общих, чем евклидово. Достаточно малые дуги геодезической линии на поверхности являются кратчайшими путями между их концами на этой поверхности. Напр., геодезические линии на круглом цилиндре - винтовые линии.
Галилеевы спутники         
  • Прибор середины XVIII века, демонстрирующий орбиты спутников Юпитера
  • 180px
  • 180px
  • Сравнение с Землёй и Луной
  • 180px
  • 180px
  • Юпитер со спутниками (объектив 300 мм, f/11, ручное [[гидирование]] 32 секунды)
  • Каллисто]]
  • Юпитер и 4 галилеевых спутника. Фокусное расстояние телескопа 900 mm, объектив 90 mm, выдержка 3,2 секунды, ISO 1600. Спутники видны ясно, Юпитер фиолетовый из-за чувствительности матрицы фотоаппарата к УФ-излучению
ЧЕТЫРЕ СПУТНИКА ЮПИТЕРА
Галиллевы спутники Юпитера; Галилеевы луны
Галилеевы спутники — собирательное название четырёх крупнейших спутников Юпитера (из их общего числа в 80): Ио, Европы, Ганимеда и Каллисто (в порядке удаления от Юпитера). Они входят в число крупнейших спутников Солнечной системы и могут наблюдаться в небольшой телескоп.
СПУТНИКИ ПЛАНЕТ         
СТАТЬЯ-СПИСОК В ПРОЕКТЕ ВИКИМЕДИА
Спутник планеты; Луны; Спутники планет Солнечной системы; Спутники планет
тела естественного или искусственного происхождения, обращающиеся вокруг планет. Естественные спутники имеют: Земля (Луна), Марс (Фобос и Деймос), Юпитер (Амальтея, Ио, Европа, Ганимед, Каллисто, Леда, Гималия, Лиситея, Элара, Ананке, Карме, Тасифе, Синопе и др.), Сатурн (Янус, Мимас, Энцелад, Тефия, Диона, Рея, Титан, Гиперион, Япет, Феба и др.), Уран (Миранда, Ариэль, Умбриэль, Титания, Оберон и др.), Нептун (Тритон, Нереида), Плутон (Харон).
Спутники планет         
СТАТЬЯ-СПИСОК В ПРОЕКТЕ ВИКИМЕДИА
Спутник планеты; Луны; Спутники планет Солнечной системы; Спутники планет

тела Солнечной системы, обращающиеся вокруг Планет под действием их притяжения. Первыми по времени открытия (не считая Луны) являются 4 наиболее ярких спутника Юпитера: Ио, Европа, Ганимед и Каллисто, обнаруженные в 1610 Г. Галилеем (См. Галилей). К 1975 известны 33 С. п. Земля имеет одного спутника - Луну; Марс - 2, Юпитер - 13, Сатурн - 10, Уран - 5, Нептун - 2 спутника. В поле тяготения планет спутники движутся по орбитам, форма которых незначительно отличается от эллипсов. Отклонения реальных орбит от эллиптических объясняются прежде всего возмущениями, вызываемыми отличием форм планет от сферической и притяжением Солнца. Взаимные возмущения спутников позволяют определять их массы. Движение большинства С. п. является прямым, т. е. они обращаются вокруг планеты в том же направлении, в котором обращаются планеты вокруг Солнца (против часовой стрелки, если смотреть со стороны Сев. полюса эклиптики). Обратными движениями обладают лишь VIII, IX, XI и XII спутники Юпитера, спутник Сатурна Феба, спутники Урана и спутник Нептуна Тритон. (В табл. приведены основные сведения об известных С. п.) Спутники Марса - Фобос и Деймос - замечательны своей близостью к планете и весьма быстрым движением: внутренний спутник (Фобос) обращается вокруг Марса быстрее, чем Марс вращается вокруг своей оси, так что для наблюдателя, находящегося на поверхности Марса, он восходит на западе и заходит на востоке. В течение марсианских суток Фобос дважды восходит и дважды заходит. Деймос перемещается по небосводу медленнее: с момента его восхода над горизонтом до захода проходит более двух с половиной суток. Оба спутника Марса движутся почти точно в плоскости его экватора. Космический зонд "Маринер-9" сфотографировал Фобос и Деймос с близкого расстояния (1972). Оба спутника оказались неправильной формы. Размеры Фобоса составляют 27 км X 21 км X 19 км, а Деймоса - 15 км X 12 км X 11 км с ошибкой измерения от 0,5 до 3 км. Геометрическое альбедо спутников Марса не превышает 0,05, т. е. по отражательной способности они сравнимы с наиболее тёмными участками лунных морей. Фобос и Деймос покрыты многочисленными кратерами. Один из них на Фобосе имеет поперечник около 5,3 км. Ударное происхождение кратеров не вызывает сомнения.

Четыре главных спутника Юпитера (открытых Галилеем) - сравнительно яркие объекты 5-6-й звёздной величины. Плоскости почти круговых орбит этих спутников приблизительно совпадают с плоскостью экватора планеты. По наблюдениям затмений этих спутников была впервые определена скорость света (1676). Спутники Юпитера Ганимед и Каллисто по своим размерам больше Меркурия. Периоды вращения вокруг оси и обращения вокруг планеты у галилеевых спутников совпадают, т. е. они обращены к планете одной своей стороной. Значительная часть поверхности Европы и Ганимеда покрыта льдом. Космический аппарат "Пионер-10" обнаружил плотную атмосферу у Ио (1973). В октябре 1974 открыт XIII спутник Юпитера.

Спутник Сатурна Титан по размерам больше Меркурия. Он обладает атмосферой, содержащей, как и атмосфера Сатурна, метан и аммиак. Самый близкий к планете спутник - Янус - открыт 15 декабря 1966 в эпоху невидимости кольца Сатурна. Обычно этот спутник скрывается в ореоле яркого кольца.

Спутники Урана обращаются по орбитам, плоскости которых близки к экваториальной плоскости планеты, и в том же направлении, в каком вращается Уран. Однако сама плоскость экватора планеты на 98° наклонена к плоскости её орбиты. Т. о., Уран вращается вместе со спутниками как бы "лёжа на боку".

Первый спутник Нептуна - Тритон - был открыт в 1846 через две недели после открытия самого Нептуна. По размерам и массе он больше Луны. Второй спутник - Нереида - обладает очень вытянутой орбитой, так что его расстояние от планеты меняется в пределах от 1,5 до 9.6 млн. км.

Названия С. п. в большинстве своём заимствованы из античной мифологии и литературных произведений. Спутники Юпитера, открытые Галилеем, обозначаются также римскими цифрами I, II, III и IV (в порядке возрастающих расстояний от Юпитера); остальные спутники Юпитера, открытые позднее, обозначаются римскими цифрами в хронологическом порядке их открытия.

Спутники планет (по данным на 1975)

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Планета | Спутник | Среднее | Сидерический | Эксцентриситет | Наклон | Диаметр, | Масса | Год |

| | | расстояние | период | | орбиты к | км | (масса | открытия |

| | | от планеты, | обращения, | | плоскости | | Луны = 1) | |

| | | тыс. км | сум | | экватора | | | |

| | | | | | планеты | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Земля | Луна | 384,4 | 27,3 | 0,055 | 23,4 | 3476 | 1,00 | 1877 |

| Марс | Фобос | 9,4 | 0,3 | 0,016 | 1,1 | 27 | - | 1877 |

| Юпитер | Деймос | 23,5 | 1,3 | 0,001 | 1,8 | 15 | - | 1892 |

| Сатурн | V | 181 | 0,5 | 0,003 | 0,4 | 220 | - | 1610 |

| Уран | I Ио | 422 | 1,8 | 0,000 | 0,0 | 3640 | 0,99 | 1610 |

| Нептун | II Европа | 671 | 3,6 | 0,000 | 0,0 | 3100 | 0,64 | 1610 |

| | III Ганимед | 1070 | 7,2 | 0,001 | 0,0 | 5270 | 2,11 | 1610 |

| | IV Каллисто | 1880 | 16,7 | 0,007 | 0,0 | 5000 | 1,32 | 1974 |

| | XIII | 11100 | 239 | 0,15 | 27 | - | - | 1904 |

| | VI | 11500 | 251 | 0,16 | 28 | 160 | - | 1905 |

| | VII | 11750 | 260 | 0,21 | 25 | 60 | - | 1938 |

| | Х | 11750 | 260 | 0,13 | 29 | 18 | - | 1951 |

| | XII | 21000 | 625 | 0,17 | 147 | 16 | - | 193& |

| | XI | 22500 | 700 | 0,21 | 164 | 22 | - | 1908 |

| | VIII | 23500 | 740 | 0,38 | 145 | 16 | - | 1914 |

| | IX | 23700 | 755 | 0,28 | 153 | 20 | - | 1966 |

| | Янус | 160 | 0,7 | 0,000 | 0,0 | 220 | 0,001 | 1789 |

| | Mимас | 186 | 0,9 | 0,020 | 1,5 | 400 | 0,001 | 1789 |

| | Энцелад | 238 | 1,4 | 0,004 | 0,0 | 500 | 0,009 | 1684 |

| | Тефия | 295 | 1,9 | 0,000 | 1,1 | 1000 | 0,014 | 1684 |

| | Диона | 378 | 2,7 | 0,002 | 0,0 | 1150 | 0,03 | 1672 |

| | Рея | 528 | 4,5 | 0,001 | 0,4 | 1600 | 1,92 | 1655 |

| | Титан | 1223 | 15,9 | 0,029 | 0,3 | 5000 | - | 1848 |

| | Гипернон | 1484 | 21,3 | 0,104 | 0,4 | 350 | 0,019 | 1671 |

| | Янет | 3563 | 79.3 | 0,028 | 14,7 | 1.800 | - | 1898 |

| | Феба | 12950 | 550,4 | 0,163 | 150 | 300 | - | 1948 |

| | Миранда | 130 | 1,4 | 0,017 | 3,4 | 400 | - | 1851 |

| | Ариэль | 192 | 2,5 | 0,003 | 0,0 | 1400 | - | 1851 |

| | Умбриэль | 267 | 4.1 | 0,004 | 0,0 | 1000 | - | 1787 |

| | Титан | 439 | 8,7 | 0,024 | 0,0 | 1800 | - | 1787 |

| | Оберон | 586 | 13,5 | 0,001 | 0,0 | 1600 | - | 1846 |

| | Тритон | 354 | 5,9 | 0,000 | 160 | 4000 | 1,8 | 1949 |

| | Нереида | 5510 | 365,0 | 0,750 | 28 | 600 | - | |

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Лит. см. при ст. Солнечная система.

Г. А. Чеботарев.

Спутники в Солнечной системе         
СТАТЬЯ-СПИСОК В ПРОЕКТЕ ВИКИМЕДИА
Спутник планеты; Луны; Спутники планет Солнечной системы; Спутники планет
Спутники планет, карликовых планет и малых тел Солнечной системы (в скобках указан год открытия; списки отсортированы по дате открытия).

Википедия

Геодезическая

Геодези́ческая (также геодезическая ли́ния) — кривая определённого типа, обобщение понятия «прямая» для искривлённых пространств.

Конкретное определение геодезической линии зависит от типа пространства. Например, на двумерной поверхности, вложенной в евклидово трёхмерное пространство, геодезические линии — это линии, достаточно малые дуги которых являются на этой поверхности кратчайшими путями между их концами. На плоскости это будут прямые, на круговом цилиндре — винтовые линии, прямолинейные образующие и окружности, на сфере — дуги больших окружностей.

Геодезические линии активно используются в релятивистской физике. Так, пробное тело в общей теории относительности движется по геодезической линии пространства-времени. По сути, временна́я эволюция всех лагранжевых систем может рассматриваться как движение по геодезической в специальном пространстве. Таким образом представима вся теория калибровочных полей.

Что такое Геодез<font color="red">и</font>ческие сп<font color="red">у</font>тники - определение